Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats
نویسندگان
چکیده
Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M‑cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer.
منابع مشابه
Effect of heterologous bone marrow mononuclear cell transplantation on midpalatal expansion in rats
The aim of this study was to explore whether bone marrow mononuclear cell (BMMC) transplantation is able to accelerate the bone remodeling induced by midpalatal expansion in rats. A total of 48 male Sprague-Dawley rats (mean weight, 208.36±7.32 g) were divided into control and midpalatal expansion with or without BMMC transplantation groups. Histological and morphological changes were observed ...
متن کاملUse of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study
Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...
متن کاملLow-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...
متن کاملIn vitro Effect of Pomalidomide on Bone Marrow Mononuclear Cells from Multiple Myeloma Patients
Background: Many features of anticancer drugs, including cytotoxicity and/or cytokine induction, are studied using cell lines orhuman blood leukocytes. However, in a disease such as multiple myeloma, most cancerous cells are resided within bone marrowmononuclear cells. In the present study, we investigated the effect of pomalidomide on apoptosis and IL-2 production of bonemarrow mononuclear cel...
متن کاملBone marrow stromal cells and their application in neural injuries
Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...
متن کامل